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The methods and materials for corrosion control of steel-reinforced concrete are reviewed. The methods
are steel surface treatment, the use of admixtures in concrete, surface coating on concrete, and cathodic
protection.

as the cut ends, are protected, provided that they are less thanKeywords admixture, cathodic, cement, concrete, corrosion,
8 mm from the zinc coating.[49] Steel surface treatments thatsteel
improve both corrosion resistance and bond strength are attrac-
tive. They include sand blasting and surface oxidation.[54]

1. Introduction Sand blasting involves the blasting of ceramic particles (typi-
cally alumina particles of a size around 250 mm) under pressure

Steel-reinforced concrete is widely used in construction. The (typically around 80 psi or 0.6 MPa). It results in roughening
corrosion of the steel reinforcing bars (rebars) in the concrete and cleaning of the surface of the steel rebar. The cleaning
limits the life of concrete structures. It is one of the main causes relates to the removal of rust and other contaminants on the
for the deterioration of the civil infrastructure. Corrosion occurs rebar surface, as rust and other contaminants typically cover a
in the steel regardless of the inherent capacity of concrete to steel rebar here and there. The cleaning causes the surface of
protect the steel from corrosion; accelerated corrosion results the rebar to be more uniform in composition, thus improving
from the loss of alkalinity in the concrete or the penetration of the corrosion resistance. The roughening enhances mechanical
aggressive ions (such as chloride ions). interlocking between rebar and concrete, thus increasing the

Methods of corrosion control of steel-reinforced concrete bond strength.[54]

include cathodic protection,[1–12] surface treatments of the rebars Water immersion means total immersion of the rebar in
(epoxy coating,[13–44] galvanizing,[21,32,45–51] copper cladding,[52] water at room temperature for 2 days. It causes the formation
protective rust growth,[53] surface oxidation,[54] and sand blast- of a black oxide layer on the surface of the rebar, thus enhancing
ing[54]), the use of admixtures (organic and inorganic corrosion the composition uniformity of the surface and improving the
inhibitors,[51,55–68] silica fume,[69–87] fly ash,[88,89,90] slag,[91] and corrosion resistance. In addition, the oxide layer enhances the
latex [92–95]) in the concrete, and the use of a surface coating adhesion between rebar and concrete, thereby increasing the
on the concrete.[96,97,98] This paper is a review of the methods bond strength. Water immersion times that are less than or
and materials for corrosion control of steel-reinforced concrete. greater than 2 days give less desirable effects on both bond

strength and corrosion resistance.[54]

Steel rebars can also be coated with a corrosion-inhibiting
cement slurry[51,55,100] or a cement-polymer composite[100] for2. Steel Surface Treatment
the purpose of corrosion protection, as described in Section 3.

Of all the methods described above for treating the surfaceSteel rebars are mostly made of mild steel because of the
of the steel rebar, the most widely used methods are epoxyimportance of low cost. (Stainless steel is excellent in corrosion
coating and galvanizing because of their relatively long historyresistance,[99] but its high cost makes it impractical for use in
of usage.concrete.) The coating of a steel rebar with epoxy (which acts

as a barrier) is commonly used to improve the corrosion resis-
tance of the rebar, but it degrades the bond between rebar and

3. Admixtures in Concreteconcrete, and the tendency of the epoxy coating to debond is
a problem.[13–44] Furthermore, areas of the rebar where the
epoxy coating is damaged and the cut ends of the rebar are not Admixtures are solids or liquids that are added to a concrete
protected from corrosion. Galvanized steel attains corrosion mix to improve the properties of the resulting concrete. Admix-
protection by its zinc coating, which acts as a sacrificial anode. tures that enhance the corrosion resistance of steel-reinforced
Galvanized steel tends to bond to concrete better than epoxy concrete include those that are primarily for corrosion inhibition
coated steel,[48] and the tendency of the coating to debond is and those that are primarily for improving the structural proper-
also less for galvanized steel. Areas of the rebar where the zinc ties of concrete. The latter are attractive due to their multifunc-
coating is damaged are still protected; the exposed areas, such tionality. The former are mostly inorganic chemicals (such as

calcium nitrite,[56,66–68,92] copper oxide,[59] zinc oxide,[59] sodium
thiocyanate,[60] and alkaline earth silicate[63]) that increase the
alkalinity of the concrete, although they can be organic chemi-D.D.L. Chung, Composite Materials Research Laboratory, State Uni-
cals, such as banana juice.[61] Admixtures that are used primarilyversity of New York at Buffalo, Buffalo, NY 14260-4400. Contact

e-mail: ddlchung@acsu.buffalo.edu. for structural property improvement can be solid particles, such
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Table 1 Effect of carbon fibers (f), methylcellulose (M), silica fume (SF), and latex (L) on the corrosion resistance
of steel rebar in concrete

In saturated Ca(OH)2 solution In 0.5 N NaCl solution

Ecorr(a) (2mV, 65) Icorr(a) (mA/cm2, 60.03) Ecorr(a) (2mV, 65) Icorr(a) (mA/cm2, 60.03)

P 210 0.74 510 1.50
1M 220 0.73 ??? ???
1M 1 f 220 0.68 560 2.50
1M 1 SF 137 0.17 ??? ???
1M 1 f 1 SF 170 0.22 350 1.15
1SF 140 0.19 270 0.88
1L 180 0.36 360 1.05
1L 1 f 190 0.44 405 1.28

Note: P 5 plain; (a) Value at 25 weeks of corrosion testing

as silica fume,[69–87] fly ash,[88,89,90] and slag,[91] and solid parti- or galvanized, this method suffers from the labor-intensive site-
oriented process involved.[100] The use of a shop coating basedcle dispersions, such as latex.[92–95]

on a cement-polymer composite is an emerging alternative.[100]Silica fume (a fine particulate) as an admixture is particularly
Of all the admixtures described above for improving theeffective for improving the corrosion resistance of steel-rein-

corrosion resistance of steel-reinforced concrete, the ones mostforced concrete due to the decrease in the water absorptivity (or
widely used are calcium nitrite, silica fume, and latex.permeability), and, to a lesser extent, the increase in electrical

resistivity.[69–87] Latex improves the corrosion resistance
because it decreases the water absorptivity (or permeability)

4. Surface Coatings on Concreteand increases the electrical resistivity.[92–95] Methylcellulose
improves the corrosion resistance only slightly.[70] Carbon fibers
(short, at a volume fraction below the percolation threshold) Coatings (such as acrylic rubber) can be applied to the
decrease the corrosion resistance due to a decrease in the electri- concrete surface for the purpose of corrosion control through
cal resistivity.[70] However, the negative effect of the carbon improving the impermeability.[96,97,98] However, this method of
fibers can be compensated for by adding either silica fume or corrosion control suffers from the poor durability of the coating
latex, reducing the water absorptivity.[70] In other words, the and the loss of corrosion protection in the areas where the
corrosion resistance of carbon-fiber-reinforced concrete, which coating is damaged.
typically contains silica fume for improving the fiber dispersion,
is superior to that of plain concrete.[70]

Table 1[70] shows the effect of silica fume, latex, methylcellu- 5. Cathodic Protection
lose, and short carbon fibers as admixtures on the corrosion
potential (Ecorr , measured according to ASTM C876 using a Cathodic protection is an effective method for corrosion
high-impedance voltmeter and a saturated calomel electrode control of steel-reinforced concrete.[1–11] This method involves
placed on the concrete surface; Ecorr that is more negative than the application of an electrical current to force electrons to go
2270 mV suggests 90% probability of active corrosion) and to the steel rebar, thereby making the steel a cathode. Because
the corrosion current density (Icorr , determined by measuring the current needs to be applied constantly, the electrical energy
the polarization resistance at a low scan rate of 0.167 mV/s) consumption is substantial. This problem can be alleviated by
of steel-reinforced concrete in both saturated Ca(OH)2 and 0.5 the use of carbon fiber (short) reinforced concrete, as de-
N NaCl solutions. The saturated Ca(OH)2 solution simulates scribed below.
the ordinary concrete environment; the NaCl solution represents Because the steel rebar is embedded in concrete, the electrons
a high chloride environment. Silica fume improves the corrosion need to go through the concrete in order to reach the rebar.
resistance of rebars in concrete in both saturated Ca(OH)2 and However, concrete is not very electrically conductive. The use
NaCl solutions more effectively than any of the other admix- of carbon-fiber-reinforced concrete for embedding the rebar to
tures, although latex is effective. Methylcellulose improves be cathodically protected facilitates cathodic protection, as the
slightly the corrosion resistance of rebar in concrete in Ca(OH)2 short carbon fibers enhance the conductivity of the concrete.[5]

solution. Carbon fibers decrease the corrosion resistance of For directing electrons to the steel-reinforced concrete to be
rebars in concrete, mainly because they decrease the electrical cathodically protected, an electrical contact is needed on the
resistivity of concrete. The negative effect of fibers can be concrete. The electrical contact is electrically connected to the
compensated for by either silica fume or latex. current supply. One of the choices for an electrical contact

Instead of using a corrosion-inhibiting admixture in the material is zinc, which is a coating deposited on the concrete
entire volume of concrete, one may use the admixture to modify by thermal spraying. It has a very low volume resistivity (thus
the cement slurry that is used as a coating on the steel rebar.[51,55] requiring no metal mesh embedding), but it suffers from poor

durability and corrosion resistance, the tendency to oxidize,Compared to the use of rebars that have been either epoxy coated
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